If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11k^2-9k+1=0
a = 11; b = -9; c = +1;
Δ = b2-4ac
Δ = -92-4·11·1
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{37}}{2*11}=\frac{9-\sqrt{37}}{22} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{37}}{2*11}=\frac{9+\sqrt{37}}{22} $
| 0.79x+45=1.29x | | 18-3x=6-9x | | x/5+x/2=21/5 | | 1.2x-3=-3.1x+40 | | 325x+234=7 | | c^2=16^2-1^2 | | a/4-5/6=0 | | 3(x-2)=4x+10 | | x4-12(6-x)=7x+3(6-2x)-1 | | 5x-4+4+3x=-8+2x+8+6x | | 2y+3/4=-9 | | 5(2+3x)=45 | | -5(8+x)=-85 | | (4h-5)=(3h-7) | | 5g×g=36-6 | | 240-53x+x^2=0 | | (4g-5)=(3g-7) | | 135+.07x=x | | -7(1+4x)=-7 | | X/6+x=14 | | 5×g=36 | | |6x-4|=-10 | | 2-x/3=-3+2x | | 5^x=85 | | 10x-16+8x+16=90 | | -0,4x+0,5=0,2x+0,1 | | (3g-2)=(5g-6) | | 35b+42=-63 | | x-7x=135 | | 55h+1=5 | | 7x-4=5x2 | | 6b^2-9=-3 |